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Abstract—Closed-form analytical expressions for stresses at any 
point of a two-phase medium consisting of a homogeneous, isotropic, 
perfectly elastic half-space in smooth contact with a homogeneous, 
orthotropic, perfectly elastic half-space caused by a tensile fault of 
finite width located at an arbitrary distance from the interface in the 
isotropic half-space are obtained. The Airy stress function approach 
is used to obtain the expressions for the stresses. 

1. INTRODUCTION 

The theory of elasticity gives an approximation to the stress-
strain behaviour of real materials. Stresses and strains within 
the earth are important precursors of earthquakes. The elastic 
dislocation theory is an important tool to study sources of 
earthquakes, to model surface deformations for any slip 
distributions, in interpreting geodetic observations etc. It has 
become an important part of seismology since Steketee (1958) 
applied it to Geophysics. Since then, dislocation theories have 
been developed for different earth models. Many scientists 
derived analytical expressions to calculate co-seismic 
deformations for different earth models and fault types. Earth 
is being treated as an elastic body. Quite often, natural 
deposits in the earth are horizontally layered. The layered 
structure of it exerts a significant influence on the deformation 
field generated by a dislocation source. The elastic properties 
of the material may be different in different directions at a 
point of a layer i.e. the medium may be anisotropic. A two-
phase medium is comprised of two half-spaces with different 
properties separated by a single plane boundary. A medium 
with three mutually perpendicular planes of elastic symmetry 
at a point is known as orthorhombic. Furthermore, if one of 
the plane of symmetry in an orthorhombic symmetry is 
horizontal, the medium is termed as orthotropic. This 
symmetry is exhibited by the principal rock-forming minerals 
of the deep crust and upper mantle e.g. olivine and 

orthopyroxenes. In orthotropic materials, there are nine elastic 
constants instead of two in isotropic materials.  

Till now, many researchers have obtained the deformation 
field due to shear or tensile faults in the two half-space model 
e.g. Singh and Rani (1991), Singh et al. (1992), Bonafede and 
Rivalta (1999), Kumari et al. (2002), Kumar et al. (2005), 
Rani and Bala (2006), Bala and Rani (2009), Malik et al. 
(2012, 2014), Godara et al. (2014,2014) and others. The 
studies related to static deformation of half-spaces in smooth 
contact are scarce than that of in welded contact. Malik et al. 
(2014) studied the deformation of two isotropic, 
homogeneous, perfectly elastic half-spaces in smooth contact 
caused by a vertical tensile fault. Godara et al. (2014) replaced 
the lower isotropic half-space by the orthotropic half-space 
and obtained the expressions for stresses and displacements at 
any point of a two-phase medium consisting of a 
homogeneous, isotropic, perfectly elastic half-space in smooth 
contact with a homogeneous, orthotropic, perfectly elastic 
half-space caused by a vertical dip-slip fault. In the present 
note, we consider the same model except the fault type. Our 
aim is to study the stress field caused by an inclined tensile 
fault of finite width located at an arbitrary distance from the 
interface in the isotropic half-space. The expressions for the 
stresses are obtained using the Airy stress function approach. 

2. FORMULATION AND SOLUTION OF THE 
PROBLEM 

Consider a two-phase medium consisting of a homogeneous, 
isotropic, perfectly elastic half-space (푥  > 0, Upper half-
space) in smooth contact with an orthotropic half-space 
(푥 < 0,   Lower half− space)  along the plane 푥 = 0 . Let 
the lower edge of the tensile fault of finite width be located at 
the point (푦 ,푦 ) of the upper half-space at a distance 푑 from 
the interface. The 푥 -axis is taken parallel to the strike of the 
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fault and 푥 -axis vertically upwards. The stress-strain relations 
for the isotropic half-space are: 

푝 = 2휇 푒 +
휎

12휎 훿 푒  ,      (푖, 푗 = 1,2,3)   (1) 

where  푝  are the components of stress tensor, 푒  are the 
components of strain tensor, 휇 is the shear modulus and 휎 is 
Poisson’s ratio.  

The stress-strain relations for the orthotropic half-space are: 
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where 푝′ , 푒 ′  are stress and strain tensors 
of orthotropic medium respectively and 푐  are the 
coefficients of stiffness matrix for 푖, 푗 = 1,2,3.    

For a two dimensional approximation in which displacement 
components 1 2 3, ,u u u  are independent of 1x  so that  휕/휕푥

0 , the plane strain problem 1( 0)u   and anti-strain 

problem 2( 0u   and 3 0)u   are decoupled and therefore, 
can be solved separately.  

The plane strain problem for an isotropic medium can be 
solved in terms of Airy stress function U  such that  

               푝 = 휕2U /휕푥  , 푝 = 휕2U /휕푥 ,                푝 =
−휕2U /휕푥 휕푥                                  (3) 

             2 2 0U                                                 (4) 

The plane strain problem for an orthotropic medium can be 
solved in terms of the Airy stress function 푈∗  (Garg et al. 
(1991)) such that 

            푝′ = 휕2U */휕푥 ,  푝′ = 휕2U */휕푥 ,   

           푝′ = − 휕2U */휕푥 휕푥 ,                               (5) 

푎  
휕
휕푥 +

휕
휕푥 푏  

휕
휕푥 +

휕
휕푥 푈∗ = 0,           (6)  

푎 +  푏 =   
(푐 푐 − 푐 − 2푐 푐 )

푐 푐   , 푎 푏 =   
c
c  . 

                                                                                  (7) 

For an isotropic medium, 

          푐 =  푐 =  푐 =
2휇(1 − 휎)

1 − 2휎   , 

         푐 =  푐 =  푐 =
2휇휎

1− 2휎  , 

         푐 =  푐 =  푐 = 휇.                                      (8) 

This yields  푎 = 푏 = 1 and equation (6) reduces to equation 
(4).                                         

Godara et al. (2014) obtained the Airy stress function for an 
arbitrary line source parallel to the 1x -axis and passing 
through the point (푦 ,푦 ) located in the isotropic half-space in 
smooth contact with the orthotropic half-space.  

For the isotropic half-space, we have 

푈 =  퐿 tan
푥 − 푦
|푥 − ℎ| +푀
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푅
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and for orthotropic half-space, 

 푈∗ = 2퐿 −퐵 tan
푥 − 푦
푦 − 푎푥 + 퐵 tan

푥 − 푦
푦 − 푏푥

+ 2푀 (푥 − 푦 )푦
−퐵
푇 +

퐵
퐻  

−  2푃 {−퐵 ln푇 + 퐵 ln퐻}

+ 2푄
−퐵 푦 (푦 − 푎푥 )

푇

+
퐵 푦 (푦 − 푏푥 )

퐻                     (10) 

where,   

  (푥 ,푥 ) = Receiver’s location, 

 푅 =  (푥 − 푦 ) +  (푥 − 푦 ) ,            

 푆 =  (푥 − 푦 ) +  (푥 + 푦 ) , 

 푇 =  (푥 − 푦 ) + (푦 − 푎푥 )  ,      
  

 퐻 =  (푥 − 푦 ) +  (푦 − 푏푥 ) , 
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 푥  ≠ 푦  ,      푥  ≠ 푦  ,     푎푥  ≠ 푦  ,     푏푥  ≠ 푦 , 

퐴 =
(푎 − 푏)− 2휇훼(푎푠 − 푏푠 )

퐺  , 

퐴 =
2휇훼(푎푠 − 푏푠 )

퐺  ,         

퐵 =
푎
퐺  ,      퐵 =

푏
퐺  ,             

퐺 = (푎 − 푏) + 2휇훼(푎푠 − 푏푠 ), 

 푟 =
푐 푎 +  푐

∆ ,    푟 =
푐 푏 +  푐

∆ ,      

 푠 =
푐 푎 +  푐

푎∆ ,   푠 =
푐 푏 + 푐

푏∆ ,         

∆ = (푐 푐 − 푐 ).                                                        (11) 

In equations (9) and (10), 퐿 ,푀 ,푃 ,푄  are the source 
coefficients and 퐿 , 푀 , 푃 , 푄  are the values of these 
source coefficients valid for  푥 < 푦  . Singh and Garg (1986) 
and Singh and Rani (1991) have given these source 
coefficients for various seismic sources. 

Using the values of the source coefficients  퐿 ,푀 ,푃 ,푄  
, 퐿 ,푀 ,푃 ,푄  in equations  (9) and (10), the Airy stress 
function due to a long tensile line source of arbitrary dip 
parallel to  푥 -axis and acting at the point (푦 ,푦 ) located in 
the isotropic half-space in smooth contact with the orthotropic 
half-space in the form; 

for isotropic half-space;  

푈 =
 ′ − ln푅 − 퐴 ln 푆 − ( ) + cos2δ ( )     +
( )( ) − ( )           −

 sin2δ ( )( ) − ( )( ) +

 ( )( )      (12) 

and for the orthotropic half space; 

 푈∗ =  
′

퐵 ln−퐵 ln퐻 +cos2δ  − ( ) +
( ) − sin2δ (푥 − 푦 )푦 −  (13) 

where,     훼 =
1

2(1− 휎). 

Now, using the polar coordinates (s,훿) ( see Figure 1), 

y = 푠 cosδ,           

y = 푑 + 푠 sinδ                               

and integrating over s between the limits (0, L), we will obtain 
the following expressions for the Airy stress function for a 

long tensile fault of width L and infinite length with lower 
edge of the fault at distance 푑 from the interface: 

푈 =
′

{(1 + 퐴 )cos 훿}푠+ (푥 cos훿 + 푋 sin훿 −
푠) ln푅       + {퐴 (푥 cos훿 − 푑 sin훿 − 푠) − 푥 sin훿)} ln 푆 +
2퐴 푥 (푥 cos훿 − 푋 ′ sin훿 − 푠)(푑 + 푠 sin훿) −

푥 cos 훿 (퐴 + 2퐴 − 1) tan
′

′  (14) 

푈∗ =
′ (퐵 − 퐵 )푠 cos 훿 − 퐵 (푥 cos훿 −             푑 sin훿 −

푠) ln푇 + 퐵 (푥 cos 훿 − 푑 sin훿 −              푠) ln 퐻 −
             퐵 푎푥 cos훿 tan +

             퐵 푏푥 cos 훿 tan
′

′         (15) 

where now, 

푅 = (푥 − 푠 cos훿) + (푋 − 푠 sin훿) ,        

푆 = (푥 − 푠 cos 훿) + (푋 ′ + 푠 sin훿) , 

푇 = (푥 − 푠 cos 훿) + (푌 + 푠 sin훿) , 

퐻 = (푥 − 푠 cos훿) + (푌′ + 푠 sin훿) , 

푋 = 푥 − 푑,       푋 ′ = 푥 + 푑, 

푌 = 푑 − 푎푥 ,        푌′ = 푑 − 푏푥  , 

0( ) ( ) (0).Lf s f L f 
 

 

 

Figure 1. Geometry of a tensile fault of width L having lower edge 
at a distance d from the interface in the isotropic half-space in 
smooth contact with an orthotropic half-space where 휹 is dip 
angle and s is the distance from the lower edge of the fault, 

measured in dip direction. 
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3. STRESS FIELD 

Using equations (3) and (14), we obtain the following 
expressions of stresses for a long tensile fault of width L and 
infinite length with lower edge of the fault at distance 푑 from 
the interface as  for isotropic half-space, 

 푝 =
(푥 cos훿 + 3푋 sin훿 + 푠 cos 2훿)−

                      2(푥 cos훿 + 푋 sin훿 − 푠)(푋 − 푠 sin훿) +
                      2 푥 cos훿 − 푋 sin훿 – 푠 − (4퐴 +
                퐴 )(푥 cos훿 + 푑 sin훿 − 푠 cos 2훿)− 푥 sin훿 −
               2 퐴 푥 cos훿 − 푋 sin훿 – 푠 (푋 + 푠 sin훿) −
              2퐴 푥 cos훿 (푥 − 푠 cos 훿)− (퐴 − 1)푥 (푋 +
              푠 sin훿) 푥 cos훿 − 푋 sin훿 – 푠   + 2퐴 (푑 +
              푠 sin훿)(푋 + 푠 sin훿) 2 푥 cos 훿 − 푋 sin훿 – 푠 +
             3푥 sin훿 + 16퐴 푥 푥 cos훿 − 푋 sin훿 – 푠 (푑 +

             푠 sin훿)(푋 + 푠 sin훿)                                     (16)                                     

 푝 =
−(푥 sin훿 − 푋 cos 훿) +

2(푋 −                  푠 sin훿) (푥 sin훿 − 푋 cos 훿) +
                 {−(퐴 + 4퐴  − 1)푥 cos훿 + (푥 sin훿 +
                 푋 cos훿)} +
2푥 (퐴 + 2퐴 )(푋 +                  푠 sin훿) cos 훿)−

       2퐴 (푋 +                 푠 sin훿)[푋 cos훿(푋 + 푠 sin훿) +
               푑 sin훿(푥 − 푠 cos훿) + 푠 cos 훿(푥 sin훿 +
               푋 cos훿)]− 4퐴 (푑 + 푠 sin훿) (푥 + 푋 +
              푠 sin훿) 푥 sin훿 + 푋 + 2푥 cos 훿(푋 +
              푠 sin훿) − 2푥 (푋 + 푠 sin훿)(푥 sin훿 +
             푋 cos 훿) + 16퐴 푥 (푑 + 푠 sin훿)(푋 +

            푠 sin훿) (푥 sin훿 + 푋 cos훿)                  (17) 

 

 푝 = (푥 cos훿 − 푋 sin훿 − 푠 cos 2훿)  +

                2(푥 cos 훿 + 푋 sin훿 − 푠)(푋 − 푠 sin훿) +
                {퐴 (푥 cos훿 + 푑 sin훿 − 푠 cos 2훿) +
                푥 sin훿} + {2퐴 (푋 + 푠 sin훿)[(푋 +
                푠 sin훿)(푥 cos 훿 − 푑 sin훿 − 푠) −
                푥 cos훿 (푥 − 푠 cos훿)]−
                4퐴 푥 [푥 cos훿 (푥 − 푠 cos훿) +
                3 sin훿 (푋 + 푠 sin훿)(푑 + 푠 sin훿)] +
               2푥 (푋 + 푠 sin훿)(푥 cos훿 − 푋 sin훿 −
               푠)} − 16퐴 푥 (푥 cos훿 − 푋 sin훿 − 푠)(푑 +

               푠 sin훿)(푋 + 푠 sin훿)                            (18) 

Using equations (5) and (18), we obtain the following 
expressions of stresses for a long tensile fault of width L and 
infinite length with lower edge of the fault at distance 푑 from 
the interface as  for orthotropic half-space, 

푝 =
−푎 퐵 (푠 cos 2훿 − 푥 cos훿 −                    푑 sin훿) +

푏 퐵 (푠 cos 2훿 − 푥 cos 훿 −                    푑 sin훿) +
2푎 퐵 (푑 + 푠 sin훿)(푥 cos훿 −                    푌 sin훿 − 푠)(푌 +
푠 sin훿) − 2푏 퐵 (푑 +                    푠 sin훿) 푥 cos 훿 −

푌 (푌 +                    푠 sin훿)                                             
(19) 

 

푝 = 푎 퐵 푥 cos훿 − 푏 퐵 푥 cos 훿 +
                   2푎퐵 (푑 +
푠 sin훿)(−푥 sin훿 −                    푌 cos훿)(푌 + 푠 sin훿)  −
2푏퐵 (푑 +                   푠 sin훿)(−푥 sin훿 − 푌 푐표푠훿)(푌 +
                  푠 sin훿)                                                   (20) 

푝 = −퐵 (푥 cos훿 + 푑 sin훿 − 푠 cos 2훿) +

                    퐵 (푥 cos 훿 + 푑 sin훿 − 푠 cos 2훿) −
                   2퐵 (푑 + 푠 sin훿)(푥 cos훿 − 푌 sin훿 −
                   푠)(푌 + 푠 sin훿) +
  2퐵 (푑 +                    푠 sin훿)(푥 cos훿 − 푌 푠푖푛훿 − 푠)(푌 +
                   푠 sin훿)                                                  (21) 

4. DISCUSSION 

Equations (14) - (21) yield the Airy stress function and stress 
field at any point of a two-phase medium consisting of an 
isotropic half-space overlying the orthotropic half-space due to 
an inclined tensile fault placed at distance 푑 from the interface 
in the isotropic half-space. These closed-form analytical 
expressions are very convenient for computing the stresses at 
any point of the medium. It has been examined that when the 
lower half-space is replaced by the isotropic one, then the 
results of the present paper, in the limit, coincide with the 
corresponding results for the stresses of Malik et al. (2014) for 
two half-spaces to be in smooth contact. It has also been 
verified that the stresses obtained satisfy the necessary 
continuity conditions at the interface. 
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